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Abstract 

In this work, a study on the influence of morphologic texture on the residual stress determination by 

diffraction in metallic materials with cubic and hexagonal symmetry is proposed. To this end, 

elastic self-consistent model has been developed to properly take into account the morphologic 

texture. Extreme crystallites morphologies (sphere, disc and fiber) were studied, and coupled with 

the crystallographic texture to reflect the combined effect of morphologic and crystallographic 

texture in elasticity. In the case of morphologic texture, a stronger influence than the 

crystallographic texture on the estimated residual stresses (several tens of MPa difference) was 

observed. We propose a methodology through a scale transition model to take into account the 

influence of these different morphologies in the stress analysis by diffraction methods. The main 

purpose of this work is to make the best choice for lattice planes (hkl) used for residual or internal 

stress analysis, in elasticity, depending on the morphologic (and crystallographic) texture of the 

polycrystal, especially when the usual X-ray Elasticity Constants (XECs) are used instead of the 

stress factors. 

1. Introduction 

Traditionally, scale transition models proposed by Voigt, Reuss, Neerfeld-Hill or classical Eshelby-

Kröner are used [1–8] to describe the distribution of stresses and strains over the oriented grains of a 

mechanically stressed polycristal. With these models, polycrystalline materials are, in most cases, 

represented by an isotropic microstructure (equiaxed or spherical grains are considered). Thus, in 

the absence of crystallographic texture, polycrystals are macroscopically elastically isotropic. This is 

not generally the case, even in the absence of crystallographic texture. 



 

2 

 

In crystalline materials, the morphology of the grains is rarely spherical or equiaxed. There are many 

crystalline materials composed of non-spherical grains with a morphologic texture. One example is 

the case of thin films with columnar grains investigated in [9–11] using a grain-interaction model 

combining the extreme Reuss, Voigt, Vook-Witt and inverse Vook-Witt models. Due to the 

columnar microstructure of these thin films, deviations from an isotropic morphologic 

microstructure (spherical grains) are observed, thus affecting the macroscopic elastic isotropic 

behavior of the material as well as the mechanical states experienced by the crystallites. Apart from 

the thin solid films, there are many others polycrystalline materials that present a microstructure 

containing non-spherical grains; for example, the structure of the  titanium alloy Ti-17 polycrystal 

consists of needle-shaped α crystallites mixed to slightly equiaxed prior β [12]. Patoor et al. [13] 

showed in situ optical microscopy observations revealing several variants of martensite stress-

induced inside each grain of a polycrystalline Cu66.9Zn23.7Al9.4 alloy during uniaxial tensile 

loading; at high stress levels: induced variants of martensite were strongly oriented by the applied 

stress. Lacoste et al. [14] investigated amorphous composite materials, made of epoxy resin and 

carbon-epoxy reinforcing strips, exhibiting an in-plane distribution on the morphologies. 

It appears obvious that polycrystals with a morphologic texture have macroscopic anisotropic 

properties even in the absence of crystallographic texture. The modelling of the mechanical 

behavior of metallic polycrystals with an anisotropic microstructure can be carried out by deductive 

methods based on strain mechanisms and scale transition methods like the Eshelby-Kröner self-

consistent model. This kind of micromechanical modelling seems to be particularly well suited to 

describe the material evolution [15–17]. When dealing with scale transition techniques, the internal 

structure of the material is introduced into the model and its evolution rules are derived from the 

governing field equations. The grain is used as a basic element representing this structure. It is 

characterized by its shape, position and orientation defining the morphologic texture. Generally, for 

the needs of the numerical simulation, each grain is considered as a uniform entity with uniform 

stress and strain fields. 

On the other hand, diffractions experiments provide information about the mechanical stresses of 

elastic and plastic origin (this latter is not discussed here). Using X-ray or neutron diffraction as an 

analytical tool, the change in the lattice parameters due to strain occurrence is measured through the 

induced diffraction peak shift in order to determine the internal stresses. The X-ray Elasticity 

Constants (XECs) which correlate the measured strains as measured by diffraction with the stress 

tensor components may be calculated with a suitable grain-interaction model like the Eshelby-

Kröner self-consistent model. Strictly speaking, in the case of elastically macroscopically 

anisotropic materials, XECs cannot be used; diffraction stress factors must be applied. Because the 
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stress factors are much more difficult to determine than the XECs, experimentally as by modelling, 

XECs are often used instead of the stress factor [18–22]. Thus, significant deviations between the 

real stress state and the one determined experimentally by diffraction methods may occur. These 

deviations will vary according to the analysed (hkl) lattice plane due to the dependence between the 

stress factors and the lattice planes.  

The aim of this paper is to demonstrate and quantify the influence of the morphologic or/and 

crystallographic texture on the mechanical properties. Special attention is paid to the determination 

of macroscopic stress of elastic origin and show the influence of the extreme anisotropy induced by 

grain-shape in the context of stress analysis by diffraction methods: X-ray diffraction (XRD) or 

neutron diffraction (ND). We are interested in the  versus sin2ψ distributions and stress states 

which are traditionally deduced. We will quantify these deviations for a large set of (hkl) lattice 

planes and materials with different symmetries (cubic and hexagonal). Eventually, the best choice of 

the (hkl) lattice planes according to the morphologic texture of the material will be proposed. The 

accuracy of the simulations is evaluated by referring to mechanical experiments (tensile tests and 

XRD) which were previously published. 

2. Eshelby-Kröner self-consistent modelling 

2.1. Accounting for an extreme morphologic texture through the self-consistent model 

Eshelby-Kröner self-consistent model, used in this study, is a very relevant model for describing the 

elastic behavior of crystalline materials. Indeed, it predicts more accurately the interactions and 

effects of intergranular heterogeneities than estimates such as Reuss, Voigt or Neerfeld-Hill 

approximations, as an example. Apart from the materials consisting of equiaxed grains, a grain-

shape texture can also be incorporated in the Eshelby-Kröner approach by considering ellipsoidal 

inclusions, provided that they have the same orientation in the specimen (as shown in Fig. 1). Even 

if it is not discussed in this paper, note that this model is also able to account for the influence of a 

free surface (anisotropic interaction between grains located in the near-surface of the sample), 

assuming, in particular that grains of the subsurface can be freely deformed in the normal direction. 

For details, the reader is referred to [23, 24]. 

To calculate the polycrystalline elastic constants from the single-crystal data assuming the approach 

developed by Eshelby [3] and Kröner [4], the crystallites surrounding a considered individual grain 

in a polycrystal are conceived as an elastically homogenous matrix with the elastic properties of the 

entire polycrystal. The local strain (at the grain scale) II and stress II can be obtained classically 

through the strain localization A and stress concentration B tensors: 
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        IIII
εAεCcEIε :::

1
ΩΩΩ 

                                                                                       (1) 

          IIII
σBσCCcEIcσ ::::: 11

ΩΩΩΩ                                                                       (2) 

where c and C are respectively the mesoscopic and the macroscopic stiffness tensors; I represents 

the fourth order identity tensor. I and I are respectively the average strain and stress of the 

polycrystal. A:B denotes the double scalar product AijklBklmn using the Einstein summation 

convention. We describe the orientations of a crystallite within a polycrystalline sample by 

specification of the rotations  (1, , 2) which relate the sample to the crystal referential system. 

1, , 2 are the three Eulerian angles [25]. The Orientation Distribution Function (ODF) [26] is 

used to give a quantitative description of crystallographic texture. The ODF indicates the volume 

fraction of grains with a certain orientation  . E  is the so-called Morris tensor, which expresses 

the interaction between an inclusion (grain) with a given morphology and the Homogeneous 

Equivalent Medium (HEM). The Morris tensor E can be calculated for the case of an ellipsoidal 

inclusion (grain) shape as follows [25, 27]:  
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where Esh
S  is the Eshelby tensor; the ia  are the lengths of the principal axes of the ellipsoid, used 

to describe grains shape. 

2.2. Application of Eshelby-Kröner self-consistent model to stress analysis by diffraction 

Diffraction methods like the sin2 method [8] for determining residual or internal stresses in 

polycrystalline materials are based on the measurement of the lattice spacing of the (hkl) planes in 

crystallites composing the diffracting volume. The diffraction geometry is shown in Fig. 2. The 

irradiated surface of the investigated specimen is perpendicular to its normal direction (S3 axis). The 

direction of the strain measurement, i.e. the direction of the diffraction vector n, is usually identified 

by the  and  angles, where  is the declination angle and  denotes the rotation of the specimen 
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around the specimen surface normal; it is the angle between the longitudinal direction (S1 axis) of 

the sample and the projection '
1L  of the diffraction vector to its surface. '

1L  is the stress 

measurement direction. (L1, L2, L3) is the laboratory frame of reference. This frame is chosen in 

such a way that the L3 axis coincides with the diffraction vector in the diffraction experiment. The 

diffraction vector n is the normal of the reflecting lattice planes; it can be expressed in the specimen 

frame of reference by: 
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
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
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,n                                                                                                                          (7) 

The elastic lattice strain  of a grain group having common (hkl) plane-normal, parallel to the 

diffraction vector n (i.e. grains fulfilling diffraction conditions) can be calculated from measured 

lattice spacing  
dV

hkl ψ, ,d   and a reference one d0(hkl) using the following expression: 

 

  














hkld

hkl ψ, ,d
ε dV

ψ
0

ln


                                                                                                                    (8) 

where d0 is the strain-free lattice parameter of the (hkl) planes. 
dV

 indicates an averaging over 

diffracting grains for the considered hkl reflection. 

 
dV

hkl ψ, ,d   is calculated using the well-known Bragg’s law once 2 angle has been determined 

form measured diffraction peak. The strain in the n direction is then given by: 
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where 0θ  is the Bragg angle of the stress-free material.  

The elastic lattice strain  measured by diffraction can also be calculated as the average second 

order lattice strain over diffracting grains for the considered (hkl) plane in the n direction: 

        ,, n.Ω.n
t

dVdV

II
ψ  hkl ψ, ,εε ΙΙ

ε                                                                         (10) 

where n
t  is the transpose of n.  

By using Eshelby-Kröner formalism (Eq. 1), this equation is rewritten as follows: 

          ,::,
1

n.Ω.n
t

dVdV

II
ψ  hkl ψ, ,εε I

εCcEI


                                              (11) 

In the general case of crystallographically or/and morphologically textured material, the dependence 
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of the measured lattice strains on the averaged stresses over diffracting grains is described by the 

main relationship for stress analysis, using the X-ray stress factors Fij [8, 28–30]: 

  I
ijijψ σhkl ψ, ,Fε                                                                                                                           (12) 

Experimentally, stress factors are evaluated by an uniaxial tensile or bending test. It can also be 

predicted using the single crystal data coupled with the orientation distribution function (or grains 

shape in the case of morphologic texture) after adopting a suitable grain-interaction model [8, 26, 

31, 32]. 

For non-textured materials, the stress factors Fij stand for a combination of the XECs, ½S2(hkl) and 

S1(hkl): 

          ijjiij δhklSψ ,nψ ,nhklShkl ψ, ,F 12
2

1
                                                                           (13) 

where ij is the Kronecker symbol. By using this latter, Eq. 12 becomes, for a non-textured, 

macroscopically isotropic polycrystalline material (with homogeneous macroscopic elastic 

properties): 

           IIII
ψ σ hklSTrhkl Sψ τhkl S ψ σσhklS ε 33212

2
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2

1
2sin

2

1
sin

2

1
 

σ                        (14) 

where 

sin2sincos 2
2212

2
11   σ   σ   σσ IIII                                                                                        (15) 

and 

sincos 2313   σ   σ  τ III                                                                                                                 (16) 

Iσ  and Iτ  are, respectively, the normal stress and the shear stress in the -direction. XECs can be 

calculated by modeling the behavior of the non-textured polycrystalline aggregate. These quantities 

are also available from experimentations.  

By considering a tensile test along the axis S1 (with  = 0°), Eq. 12 becomes: 

      III
ψ σ .hkl Sψ sin.σhklS σhkl ψ, ,Fε 111

2
1121111

2

1
0                                                                  (17) 

 plotted versus sin2 for isotropic polycrystalline materials is therefore a straight line. Its slope is 

proportional to Iσ11 . By simulating an uniaxial tensile test with a macroscopic stress Iσ11 = 100 MPa, 

we calculated first the ½S2(hkl) and S1(hkl) XECs for several polycrystals with cubic or hexagonal 

symmetries (aluminum, beryllium, copper, zirconium, titanium, cadmium, alpha-iron and gamma-
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iron) consisting of 20000 equiaxed grains with random crystallographic orientations. This choice of 

20000 grains will enable to have a large number of diffracting grains, and therefore, high-accuracy 

on the calculated XECs. The XECs obtained are in good agreement with constants obtained 

numerically in [8, 33] and experimentally in [31, 32, 34].  

As we will see in the following, texture effects on stress analysis by diffraction methods are very 

low when the individual crystallites of a polycrystal are quasi-elastically isotropic. For this reason, 

only the results obtained for the zinc and the gamma-iron which single crystals are strongly 

elastically anisotropic will be presented in this paper. Table 1 gives XECs calculated for these two 

materials, using 20000 equiaxed grains with random crystallographic orientations. The single-

crystal elastic constants used in the simulations are: c11 = 197.5 GPa, c12 = 124.5 GPa, c44 = 122.0 

GPa for the gamma-iron [35] and c11 = 163.7 GPa, c12 = 36.4 GPa, c13 = 53.0 GPa, c33 = 63.5 GPa, 

c44 = 38.8 GPa, c66 = 63.6 GPa for the zinc [36, 37]. 

Fig. 3 shows, for  = 0°, -vs.-sin2ψ diagrams for the (200) and (220) lattice planes of the gamma-

iron (-Fe), (00.4) and (10.4) of the zinc, in the absence of morphologic and crystallographic 

textures. One can observe a straight evolution of the average lattice strains. The vertical bars or 

rows of points in this figure indicate the second order lattice strains distribution at a given 

inclination angle ψ. This second order lattice strains distribution is due to the elastic anisotropy of 

the crystallites constituting the diffracting volume. 

In the remainder, we will distinguish two cases of simulation of -vs.-sin2ψ diagrams: XRD and 

ND. In XRD, these diagrams are simulated with 21 tilt angles ψ ranging from -60 to 60°. They were 

simulated, in ND, with 31 tilt angles ψ varying between -90 and 90°. These are typical values used, 

respectively, in XRD and ND measurements [8]. 

3. Influence of morphologic texture on stress analysis by diffraction 

Taking into account an extreme morphologic texture will influence the macroscopic elastic behavior 

of the polycrystal (the corresponding macroscopic elastic behavior of which is obviously 

transversely isotropic). Indeed, as one can observe from Eq. 10, a modification of second order 

elastic lattice strains II
ε  would influence the measured elastic lattice strain  over diffracting 

grains along the measurement direction n. 

Using Eq. 11, we simulated uniaxial tensile tests and plotted the evolution -vs.-sin2ψ diagrams 

for different polycrystals with cubic or hexagonal symmetry. An isotropic crystallographic texture 

has been used to highlight only the influence of the morphologic texture. 
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The morphologic texture is incorporated in the model by considering ellipsoidal inclusions with 

their principal axes aligned along common directions in the specimen frame of reference. The shape 

of the crystallites has been described by a shape parameter denoted , which is defined as the ratio 

of the principal axis of the ellipsoid (a3) and the secondary axes (a1 or a2) of the ellipsoid (see Fig. 

1). 

2

3

1

3

a

a

a

a
η                                                                                                                                        (18) 

Shape parameters used to describe the morphologic textures investigated in this work are given 

below (by considering a1 = a2 = 1): 

-  = 1 for spherical grains 

-  = 100 for fiber shape 

-  = 0.01 for disc shape 

These shape parameters (for fibers and discs) have been chosen to take into account an extreme 

morphologic texture.  

The mechanical response of a transversely isotropic material differs depending on the morphologic 

orientation of the grains. To account for the influence of the morphologic orientation of the grains, 

we simulated an uniaxial tensile test with a macroscopic stress Iσ11 = 100 MPa by varying the 

morphologic orientation of the grains in the sample (see Fig. 4). For each considered morphology, 

three different simulations are then performed: 

- first, when grain principal axes (a3) are aligned preferentially along the loading direction (a3 // S1). 

- Secondly, when the (a1) axes of the grains are aligned preferentially along the loading direction 

and (a2) perpendicular to the specimen surface S (a1 // S1, a2  S). 

- Finally, when the (a1) axes of the grains are aligned preferentially along the loading direction and 

(a3) perpendicular to the specimen surface S (a1 // S1, a3  S); this latter corresponds to the case of 

thin films with columnar grains, when a fiber or disc texture is considered. 

In the remainder of the paper and for more clarity, the cases (a3 // S1), (a1 // S1, a2  S) and (a1 // S1, 

a3  S) have been denoted C1, C2 and C3, respectively. 

Several lattice-planes commonly used to perform lattice strains measurements in XRD [8, 38–43] 

and ND [44–48] have been investigated. In order to compare the influence of the morphologic 

texture on stress analysis by XRD and ND methods, we have chosen to present only the results 

obtained for (hkl) planes in common to these two diffraction techniques (see Table 2). 
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The elastic strains  have been plotted as a function of sin2ψ in Fig. 5 for (200) and (220) planes 

of the gamma-iron and (00.4) and (10.4) planes of the zinc, by taking into account the different 

morphologic orientations of the grains defined in Fig. 4. For the sake of clarity, only the average 

strains were plotted. We note that the anisotropy introduced by the morphologic texture has greatly 

changed the -vs.-sin2ψ distributions for some (hkl) planes. More or less oscillations were 

observed, depending on the lattice plane analysed. For a given extreme grain shape (fiber or disc), 

the -vs.-sin2ψ diagram deviates from the one obtained for a non-textured material composed of 

spherical crystallites. The linearity of the -vs.-sin2ψ curves is preserved for the case (a1 // S1, a2  

S) but their slopes are more or less different from that obtained on a macroscopically isotropic 

polycrystal according to the morphologic texture considered (strong deviations have been observed 

for the disc texture). For the two others cases of loading, this linearity is no longer preserved. 

Different -vs.-sin2ψ distributions have been observed according to the grains shape, their 

orientation in the specimen, the (hkl) lattice plane and the polycrystal investigated (i.e. whether 

gamma-iron or zinc is studied). As indicated in the previous section, experimental determinations of 

an unknown state of stress (residual or internal stresses) are usually performed with these curves and 

XECs ½S2(hkl) and S1(hkl) values of the specimen, using Eq. 14, instead of the stress factors [18–

22]. Due to the influence of the morphologic texture on the -vs.-sin2ψ diagrams, their 

interpretation in terms of macroscopic stresses will, therefore, lead to a state of stress more or less 

far from the real stress in the material. Because some diagrams are not linear, the stress determined 

by XRD and ND methods can be different. To avoid all these deviations, a proper selection of 

reflections less sensitive to the morphologic texture is crucial, hence the interest to study the 

influence of the morphologic texture on the different planes used in diffraction technics. 

The stresses are calculated using an elliptical regression Asin2ψ Bsin2ψ + C (Eq. 14) curves of each 

-vs.-sin2ψ diagrams obtained. Due to the uniaxial state of stress considered (absence of shear 

stress), B coefficients obtained are practically zero and regressions are linear rather than elliptical 

and have the form of Eq. 17. The stress component I
determined,σ11  determined from these regressions 

is then compared to the real stress I
expected,σ11  in the material in terms of relative deviation: 

100Δ

11

1111

11 



I

expected,

I
expected,

I
determined,I

σ

σσ
σ                                                                                               (19) 

Furthermore, the calculated deviations are a helpful tool to quantify the influence of the 

morphologic texture on the mechanical properties at an intermediate scale corresponding to the 

diffracting volume. The results obtained for the gamma-iron (-Fe) and the zinc (Zn) have been 



 

10 

 

presented in Table 2. A maximal relative difference of 27.2 and 38.1 % has been observed for the 

gamma-iron and the zinc, respectively. However, one can observe that some planes are less 

influenced by the morphologic texture depending on the microstructure (fiber or disc) and their 

orientation ((a3 // S1), (a1 // S1, a2  S) and (a1 // S1, a3  S)); it is the case for example for (10.0), 

(00.4), (11.0), (20.1) and (30.2) planes of the zinc with fiber texture when (a3 // S1). 

For example, analyzing zirconium (or zirconium alloy) sample by XRD, experiments were carried 

out on the lattice plane (10.4) (2  156°) using a Cr radiation [39]. If a disc texture with a 

morphologic orientation (a3 // S1) exists in the polycrystal, a relative deviation of 27 % is observed 

on the determined stress. In this case, it would be better to use the (30.2) lattice plane with Cu 

radiation which will give only 6 % of relative deviation. 

To show the relevance of the model, we compare our calculations to experimental data from the 

literature. Because the main interest of this contribution is to highlight the influence of the 

morphologic texture, we choose to compare our calculations to experimental data obtained by 

Faurie et al. [49] on non-textured (i.e crystallography texture does not occur) gold films. The 

measurements were performed using synchrotron X-ray diffraction combined with in situ tensile 

tests. For each applied (uniaxial) load to the dog-bone specimen (film + substrate), the authors 

calculated the resulting biaxial stress in the non-textured gold films; these values can be found in 

[49]. The measurements were performed for the longitudinal direction ( = 0°) and for 8 different ψ 

values (ranging from 0° to 66°). 

From the equation 11, we simulated -vs.-sin2ψ diagrams for (222) and (420) planes, which are 

then compared to experimental data [49]. 20000 grains with random crystallographic orientations 

are used to describe the texture-free state of the gold films. Due to the small thickness of the films 

(500  10 nm), the morphologic texture of the crystallites has been described by disc-shaped grains 

which axis are perpendicular to the specimen surface (C3 case in Fig. 4). The single-crystal elastic 

constants used are c11 = 190 GPa, c12 = 161 GPa and c44 = 42.3 GPa [50]. Fig. 6 shows -vs.-sin2ψ 

curves for (222) and (420) planes for the 3 biaxial stress states (denoted T1, T2 and T3) applied to the 

specimen, computed assuming either an isotropic morphologic texture (spherical grains) or a disc 

grain morphology. A very satisfactory fitting of measured data is obtained considering the disc 

texture rather than spherical grains. The influence of the morphologic texture is more noticeable on 

the sin2ψ plots for the 222 reflection, especially when the applied load is important. A very good 

agreement between the experiment and the model is observed. 

4. Influence of crystallographic texture on the diffraction stress analysis 
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The presence of a crystallographic texture in polycrystalline materials is not an exception: any 

polycrystalline material has necessarily a crystallographic texture either weak or strong. The 

evaluation of residual stresses in crystallographically textured materials will not be discussed here. 

A detailed description can be found in [26, 28, 32, 51]. The aim of this section is to evaluate the 

crystallographic texture effect in the stress analysis by diffraction technics in order to make a 

comparison with the morphologic texture effect. 

A rolled texture simulated by a Taylor viscoplastic model [52] with a final plastic strain of 80 % is 

used to define the crystallographic texture of polycrystals with cubic structure (face centered cubic 

or body centered cubic structures). For polycrystals with hexagonal structure, we used an 

experimental ODF of zircaloy-4 plate cold-rolled with a total strain rate of 47 % [53]. Some pole 

figures of these crystallographic textures are shown in Fig. 7.  

Texture can be quantified in the model by introducing the ODF specifying the volume fraction of 

crystallites having a given orientation (1,,2). Fig. 8 shows -vs.-sin2ψ diagrams of the (200) 

and (220) lattice planes of the gamma-iron, (00.4) and (10.4) of the zinc, in the case of 

crystallographic texture (spherical grains are considered). The crystallographic texture leads to non-

linear distributions of -vs.-sin2ψ curves, except for (200) and (00.4) planes. No oscillation 

occurred on (222) plane -vs.-sin2ψ plots (not shown here) in spite of the crystallographic texture. 

This confirms the results of [51] who verified experimentally that hhh and h00 reflections could be 

used without knowledge of the crystallographic texture because their XECs are independent of  

and  angles. The missing points in the vertical bars or rows of points in this figure, comparatively 

to Fig. 3, are due to the suppression of some orientations (1,,2) of the diffracting grains and 

their reorientations in the preferential directions. 

Commonly, for crystallographically textured materials, XECs depend on the measurement direction, 

but the values calculated from isotropic materials are often used, for the sake of simplicity, in stress 

analysis by diffraction methods. As in the previous case, a study has been done using XECs 

calculated from spherical grain (isotropic texture). Relative differences using Eq. (19) on 

determined stresses for the gamma-iron (-Fe) and the zinc (Zn) have been presented in Table 3. 

Only a maximal relative difference of 13.3 % and 11.9 % has been observed for the gamma-iron and 

the zinc, respectively, although these crystallographic textures are strongly marked. 

5. Combined effects of crystallographic and morphologic textures on stresses analysis by 

diffraction 



 

12 

 

The mechanical behaviour of a polycrystalline material depends not only on its crystallographic 

texture but also on its morphologic texture. We have shown that each of these two forms of textures 

can greatly influence the results of stress analysis by XRD and ND technics; a stronger influence in 

the case of the morphologic texture has been observed. Usually, in a polycrystalline material, these 

two types of textures are susceptible to occur simultaneously, influencing the multi-scale 

mechanical properties and thus the results of stress analysis by diffraction methods. It is therefore 

necessary to focus on the combined effects of these two types of textures on the stress analysis by 

diffraction. The morphologic texture (fibers and discs) and crystallographic one mentioned in the 

previous paragraphs are used to evaluate the combined effects of crystallographic and morphologic 

textures in the stress analysis. 

The  strains have been plotted as a function of sin2ψ in Fig. 9 for (200) and (220) planes of the 

gamma-iron and (00.4) and (10.4) planes of the zinc. For each considered morphology, three 

different simulations have been achieved: 

- first, when grain principal axes (a3) are aligned preferentially along the loading direction (a3 // S1 // 

RD); the loading direction (S1 axis) corresponds to the rolling direction (RD) in the case of the fiber 

texture and to the transverse direction (TD) in the case of the disc texture, 

- secondly, when the (a1) axes of the grains are aligned preferentially along the loading direction and 

(a2) perpendicular to the surface of the specimen (a1 // S1 // TD, a2  S), 

- and finally, when the (a1) axes of the grains are aligned preferentially along the loading direction 

and (a3) perpendicular to the sample surface (a1 // S1 // TD, a3  S).  

For the two last cases, the loading direction corresponds to RD for the disc texture and TD for the 

fiber texture. 

We note that these curves differ from those obtained using only the effects induced by either a 

morphologic (Fig. 5) or a crystallographic texture (Fig. 8). By observing the evolution of these 

curves, we can deduce that the interpretation of these latters will lead, obviously, to different values 

of stresses (more or less different from the real stresses in the material). 

Table 4 gives relative deviations on determined stresses by diffraction, due to the combined effects 

of crystallographic and morphologic textures. 

The relative deviations obtained are greater than those resulting from morphologic and 

crystallographic textures, separately taken into account. A maximal relative difference of 36.6 % is 

observed for the gamma-iron and 44.4 % for the zinc. 
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To show the ability of the model to take into account the combined effects of crystallographic and 

morphologic textures in the stress analysis by diffraction, our calculations have been compared to 

experimental data published by a research group, on the basis of mechanical tests measurements. 

We compare our calculations to experimental data obtained by Renault et al. [54] on (111)-textured 

gold films. X-ray diffraction measurements were performed on a dog-bone specimen (film + 

substrate), using a four-circle goniometer. The specimen was subjected to four uniaxial increasing 

loading states 'T1
= 0.7 MPa, 'T2

= 1.3 MPa, 'T3
= 1.8 MPa and 'T4

= 2.5 MPa. Three different (hkl) 

planes were analysed: (222) at  = 0°, (400) at  = 54.74°, (311) at  = 29.5° and 58.5°. The 

measurements were performed in the longitudinal (S1) and transversal (S2) directions. Using a least-

squares problem, the authors determined the elastic single-crystal compliances of the textured 

anisotropic gold film. The compliances found were slightly different from the corresponding bulk 

material ones. 

We have simulated -vs.-sin2ψ curves for the (hkl) planes experienced by [54], using the single-

crystal elastic constants given by [50]. The morphologic texture of the crystallites has been 

described by disc-shaped grains which axis are perpendicular to the specimen surface (C3 case in 

Fig. 4), due to the small thickness of the films (260 nm). A (111) fiber-texture has been simulated 

with a dispersion of 8° around the S3 axis, generally observed in the thin films [55]. 20000 

orientations have been selected to describe the crystallographic texture of the thin films. Fig. 10a 

shows the corresponding simulated (111) pole figure. For each applied load, the biaxial stresses 

resulting in the gold film have been calculated and the corresponding values are given in Table 5.  

Fig. 10b shows lattice strains  plotted versus sin2 in the longitudinal direction ( = 0°) and the 

transversal one ( = 90°), for the four declination angles . Once again, a good agreement between 

experiment and simulation can be observed in Fig.10b. It can be conclude that the self-consistent 

model can describe the measured sin2 plots of the films analysed. 

6. Discussion 

From the above sections, one can notice that all planes would not provide the same stress values: 

some planes are less sensitive to the effects of texture (crystallographic, morphologic or combined 

effects of both textures); some are strongly influenced by the effects of texture. We have shown that 

the morphologic texture, often neglected in the context of achieving stress analysis by XRD and ND 

technics, is the main cause of the relative discrepancies obtained between the calculated and the 

applied macroscopic stress values. The morphologic texture denotes not only the shape of the 
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grains, but also their orientation relative to the loading or residual stress direction (as showed in Fig. 

4).  

Traditionally, in stress analysis, a macroscopically elastically isotropic specimen is considered. In 

this case, the only way to avoid or to minimize the effects of morphologic texture in stress analysis 

is to make a good choice of (hkl) planes when performing lattice strain measurements. First, note 

that the morphologic texture does not have the same effects on all the polycrystalline materials, as 

observed for the gamma-iron and the zinc. Studies presented in this paper were conducted on 

several materials; we observed that morphologic texture effects depend on the elastic anisotropy 

coefficient Ac of the single crystal of the material ( )(2 121144 cc/cAc   for polycrystals with cubic 

structure and 13331211 /)( cccc   for polycrystals with hexagonal structure [25]). An elastic 

anisotropy coefficient of the single crystal close to 1, minimizes the effects of morphologic texture 

in the stress analysis by diffraction (the results obtained for aluminum, beryllium, titanium confirm 

this latter). The influence of the morphologic texture increases as the elastic anisotropy coefficient 

Ac deviates from 1. It is the case for example of gamma-iron, zinc or copper. Thus, any (hkl) plane 

can be used without knowledge of the morphologic texture, when the elastic anisotropy coefficient 

of the single crystal of the material is close to 1. On the other hand, when Ac is more important 

(about 2 or more), some (hkl) planes are best suited for the stress analysis by XRD and ND technics 

and some are to be avoided. For example, analyzing aluminium (Ac  1.22) [38] by XRD, 

experiments are carried out on the lattice plane (222) (2  156.71°) using a Cr radiation [8]. If a 

disc texture with a morphologic orientation (a3 // S1) and a marked crystallographic texture exists in 

the polycrystal, a low relative deviation (5.6 %) would be observed on the determined stress. For the 

others planes, relative deviation observed would not exceed 5 %. In this case, any (hkl) plane could 

be used. In gamma-iron (Ac  3.34), XRD experiments are carried out on the lattice planes (311) 

and (222) (2  126.83° and 138.15° respectively) using a Fe radiation (Hauk, 1997). If a 

crystallographic texture exists, a relative difference of 36.6 % is observed for the stresses 

determined on the (222) reflection whereas the discrepancy reduces to 11.7 % for the (311) plane in 

the C3 case of the disc texture. On the other hand, in the C1 case of the fiber texture, only 0.3 % of 

relative difference is observed using (222) plane and 14.7 % using (311) plane. 

According to the previous results, we propose a selection criterion (Table 6) to choose the (hkl) 

planes for stress analysis by diffraction, to minimize the effects of morphologic texture or the 

combined effects of crystallographic and morphologic textures. Table 6 concerns materials with an 

elastic anisotropy coefficient Ac about 2 or more. The appropriate (hkl) planes in this Table take into 

account the morphologic and crystallographic textures indicated in Fig. 4 and Fig. 7, respectively. 
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The maximal relative difference on the determined stresses, below which an (hkl) plane is 

considered favourable is 10 %. This value has been chosen arbitrarily. If the relative differences are 

between 10 and 20 %, the choice of the corresponding lattice planes should be avoided if possible. 

(hkl) planes with a relative difference up to 20 % should be strictly avoided. We note that each (hkl) 

plane can be favourable or not, depending on the morphologic texture of the polycristal, except 

(844) plane which is an appropriate choice for stress analysis whatever the texture. 

7. Conclusion 

The morphologic texture influence on macroscopic stress determination, by diffraction methods in 

polycrystals having cubic or hexagonal symmetries, were investigated by Eshelby-Kröner self-

consistent calculations. A stronger influence of morphologic texture in terms of stresses was 

observed. These effects of morphologic texture depend on the type of the grain shape considered 

(fiber or disc), the direction of the applied stress, the grains morphologic orientation in the sample, 

the inclination angles  used and the single crystal elastic anisotropy. The predicted mechanical 

behaviour is compared with published experimental results and a good agreement between theory 

and experiment was found. Numerical results obtained at the different scales of the material show 

the relevance of this approach for polycrystalline materials and validate the scale transition method 

used. If the single crystal of the material is almost elastically isotropic, any (hkl) plane can be used 

without knowledge of the morphologic texture. In this case, the maximal relative discrepancy on 

determined stresses observed is about 10%. For materials exhibiting strongly anisotropic elastic 

properties at mesoscopic level coupled with extreme morphologic texture of fiber or disc and a 

crystallographic one (either weak or strong), it was found that the measured diffraction strain is 

strongly dependent of the grain shape texture causing the observed non-linearities in the -vs.-

sin2ψ plots. In this case, the use of diffraction (X-ray) elastic constants causes errors (up to 44.4 %) 

in the stress analysis. To circumvent this problem, a selection criterion was proposed to choose (hkl) 

planes favourable to stress analysis by diffraction technics. By using favourable (hkl) planes, XECs 

can be used instead of the stress factors which evaluation is more complex than XECs. 
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Table 1 XECs 1/2S2 (10-6 MPa-1) as a function of the diffracting planes (hkl), calculated using Eshelby-

Kröner self-consistent model. 

Table 2 Relative deviation (in %) on determined stresses by diffraction methods, due to the effects of 

morphologic texture; C1, C2 and C3 correspond to (a3 // S1), (a1 // S1, a2  S) and (a1 // S1, a3  S) cases, 

respectively. Relative differences exceeding 10 % are highlighted in bold. 

Table 3 Relative deviation (in %) on determined stresses by diffraction methods, due to the effects of 

crystallographic texture, along the rolling direction (RD) and the transverse one (TD). Relative differences 

exceeding 10 % are highlighted in bold. 

Table 4 Relative deviation on determined stresses by diffraction technics, due to the combined effects of 

crystallographic and morphologic textures; C1, C2 and C3 correspond to (a3 // S1 // RD), (a1 // S1 // TD, a2  

S) and (a1 // S1 // TD, a3  S) cases, respectively. Relative deviation exceeding 20 % are highlighted in bold. 

Table 5 Values of the applied forces and resulting applied stresses in the (111)-textured gold films. 

Table 6 Recommendations on the choice of the lattice-plane in stresses analysis by diffraction methods 

according to the morphologic texture of the single-phase polycristal with Ac about 2 or more. C1, C2 and C3 

correspond to (a3 // S1 // RD), (a1 // S1 // TD, a2  S) and (a1 // S1 // TD, a3  S) cases, respectively; according 

to the relative deviation on determined stresses, some (hkl) planes should be: (+) favourable for stresses 

analysis by diffraction methods below 10 %, (-) avoided, if possible, between 10 and 20 % and () strictly 

avoided, above 20 %. 
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Fig. 1  Definition of the geometry of the extreme morphologic textures studied. 
 

Fig. 2  Geometry of the diffraction: definition of the rotation angle  of the sample around the 

sample surface normal (3) and the inclination angle   of the sample surface normal with respect to 

the diffraction vector n (aligned along the L3 axis); (S1, S2, S3) is the sample reference frame and 

(L1, L2, L3) the laboratory reference frame. 

 

Fig. 3  -vs.-sin2ψ diagrams for non-textured isotropic materials. () second order lattice strain of 

each crystallite participating in the diffracting volume; ( ) diffracting volume average lattice 

strain. 

 

Fig. 4  Different morphologic orientations of the grains in the samples. 
 

Fig. 5  -vs.-sin2ψ diagrams for morphologically textured materials, diffracting volume average 

lattice strain: ( ) loading direction parallel to (a3) grain axes (a3 // S1); ( ) loading direction 

parallel to (a1) grain axes and (a2) perpendicular to the surface of the specimen (a1 // S1, a2  S); 

( ) loading direction parallel to (a1) grain axes and (a3) perpendicular to the surface of the 

specimen (a1 // S1, a3  S); ( ) non-textured isotropic case (spherical grains). (for colored figure, 

reader is invited to see the article web version). 

 

Fig. 6  -vs.-sin2ψ curves for (222) and (420) planes for the 3 biaxial stress states (T1, T2 and T3), 

using an isotropic morphologic texture (spherical grains) and a disc texture. Continuous lines 

represent the theoretical strains obtained from the Eshelby-Kröner model; the symbols ( : T1, : 

T2, : T3)  represent the experimental strains [49]. 

 

Fig. 7  Pole figures of crystallographic textures used to simulate the elastic behaviour of materials 

with cubic (a) and hexagonal (b) crystal system. RD: rolling direction; TD: transverse direction.  

 

 

Fig. 8  -vs.-sin2ψ diagrams for crystallographically textured materials. () second order lattice 

strain of each diffracting crystallite for the considered (hkl) plane; ( ) diffracting volume 

average lattice strain; (  ) non-textured isotropic case. 
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Fig. 9  Combined effects of crystallographic and morphologic textures on -vs.-sin2ψ diagrams, 

diffracting volume average lattice strain: ( ) loading direction parallel to (a3) grain axes and RD 

(a3 // S1); ( ) loading direction parallel to (a1) grain axes and (a2) perpendicular to the surface of 

the specimen (a1 // S1, a2  S); ( ) loading direction parallel to (a1) grain axes and (a3) 

perpendicular to the surface of the specimen (a1 // S1, a3  S); ( ) non-textured isotropic case 

(spherical grains); for (a1 // S1, a2  S) and (a1 // S1, a3  S) cases, the loading direction corresponds 

to RD for disc texture and TD for fiber texture. 

 

Fig. 10  (a) Simulated (111) pole of the (111)-textured gold films with a dispersion of 8° around the 

S3 axis; (b) -vs.-sin2ψ curves for the 4 loading states; using an isotropic morphologic texture 

(spherical grains) and a disc texture; open symbols ( : 'T1 , : 'T2 , : 'T3 , : 'T4 ) 

represent the theoretical strains obtained from the Eshelby-Kröner model; full symbols ( : 'T1 , 

: 'T2 , : 'T3 , : 'T4 ) represent the experimental strains [54]. 

 

 


