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9

The purpose of this paper is to take into account the derivative by moisture content of polymer volume in order to establish
a diffusion law within the so-called “thermodynamical approach” for a polymer material which experiences a hygro-
mechanical load. In this study, the specific case corresponding to the existence of unsymmetrical hygroscopic boundary
conditions was investigated.
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1 Introduction10

Polymers and polymeric composites absorb moisture when exposed to ambient humidity or immersed in liquid. Polymeric11

matrix composites differ from other materials in the sense that low-molecular weight substances such as water may easily12

migrate even at room temperature, generating a variation of the material’s structure, morphology, and composition. More-13

over, many authors have reported that hygro-thermal ageing could induce a loss of the mechanical stiffness and/or strength14

of organic matrix composites [15, 19]. It is probable that the factors described above will also affect the moisture sorp-15

tion behavior of polymer matrix composites. In order to predict the time-dependent evolution of the moisture content of16

composite structures, various models have been developed in the literature. Among them, some are based on the classical17

Fickian diffusion model [8, 9, 11, 20]. More recently, Fick’s model has successfully been combined with scale transition18

models such as the Eshelby-Kröner self-consistent model for predicting multi-scale distribution of the internal mechanical19

states during the transient step of the moisture diffusion process experienced by polymer composites [7, 10].20

Nevertheless, some experimental data demonstrate that the moisture sorption in composite structures could differ from21

the typical Fickian uptake [3, 16]. As a consequence, some researchers have developed models in order to reproduce the22

anomalous sorption curves observed in practice [5, 21]. Among the proposed methods, [17] documented a multi-physics23

approach to the diffusion mechanisms, compatible with the thermodynamics. The approach is similar to that presented24

by Larché and Cahn or Aifantis and Gerberich for predicting the diffusion of gases through elastic solids [1, 2, 12]. The25

multiphysics thermodynamic model proposed by Larché and Cahn was later implemented by Neogi et al. who achieved26

the successful fitting of experimental results obtained on thin polymer membranes [14]. Nevertheless, in these pioneering27

works, the differential swelling was treated owing to simplifying assumptions relating the deformation field to the existing28

penetrant concentration [13].29

More recently, other mutliphysics model coupling the mechanical states to mass-transport process were developed in30

the case that linear viscoelastic solids were considered [4]. An important feature of that formulation, although limited to31

the one-dimensional case, is that the expressions used for the chemical potential and the stress constitutive equations are32

thermodynamically consistent, since they come from the equation describing the Helmholtz free energy [4].33

In recent works [6,18], other models, focused on the description of anomalous diffusion, were also developed which were34

compatible with the thermodynamics. Nevertheless, the mathematical formalism presented in both references [6, 18] does35

not enable the effects on the moisture kinetics induced by the presence of an in-depth heterogeneous profile of the hygro-36

elastic strain to be accounted for. The present work will present a possible way to address this issue. The developments37

detailed in this paper will also extend the formalism, so that an unsymmetrical hygroscopic load can be considered, whereas38
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2 B. E. Sar et al.: Multi-physics modelling of the diffusive behaviour of polymers

only symmetrical cases could be modeled using the historical version of the model [6, 18], as well as according to the39

original pioneering papers published in this very field of research [1, 2, 12].40

2 Hygroscopic pressure41

Moisture absorption induces swelling strains that actually correspond to the existence of a hygroscopic pressure within the42

material. The in-depth, time-dependent hygroscopic pressure profile occurring during the transient stage of the diffusion43

process is determined according to the three following equations: (1) Hygro-elastic Hooke’s law, (2) Equilibrium equations,44

and (3) Compatibility equations.45

εil =
1 + ν

E
σil − ν

E
δiltrσil + ηCδil, (1)46

47

σil,l = 0, (2)48

49

εil,jk + εjk,il − εjl,ik − εik,jl = 0, (3)50

where ν is Poisson’s ratio, E the Young’s modulus and η the coefficient of moisture expansion of the polymer (CME). C51

denotes the moisture content (assuming the material to be initially dry) while δil stands for the Kronecker’s symbol, i.e.52

δil =

{
1 (i = l)
0 (i �= l)

. For a given set of indices (i, l) in (1)–(2), we use the following replacement rule j = k = 1, 2, 3 in53

Eq. (3), the summation of which yields:54

Δεil + εkk,il −
(
εik,lk + εlk,ik

)
= 0. (4)55

Accounting for the hygro-elastic Hooke’s law (1), the sum
(
εik,lk + εlk,ik

)
appearing above in relation (4) actually satisfies56

the following equation57

εik,lk + εlk,ik =
1 + ν

E

(
σik,lk + σlk,ik

) − ν

E

(
σkk,lkδik + σkk,ikδlk

)
+ η

(
C,lkδik + C,ikδlk

)
. (5)58

Since σik,lk = σlk,ik = 0; σkk,lkδik = σkk,ikδlk = σkk,il ; C,lkδik = C,ikδlk = C,il, many terms cancel in Eq. (5) that can59

be written in the following simplified form:60

εik,lk + εlk,ik = − 2ν

E
σkk,il + 2ηC,il. (6)61

Substituting Eq. (6) into Eq. (4) yields62

Δεil + εkk,il +
2ν

E
σkk,il − 2ηC,il = 0. (7)63

Considering the replacement rule i = l in (7) yields64

Δεll + εkk,ll +
2ν

E
σkk,ll − 2ηC,ll = 0. (8)65

Actually, the Laplacian of moisture content is written as C,ll = ΔC. Moreover, Δεll = Δεkk = εkk,ll. As a result, the66

relation can be simplified as follows67

Δεkk +
ν

E
σkk,ll − ηΔC = 0. (9)68

From Eq. (1), the second derivative of the hygro-elastic strain trace, εkk,il, featured in Eq. (7), satisfies:69

εkk,il =
1 − 2ν

E
σkk,il + 3ηC,il. (10)70

Putting i = l into Eq. (8) provides the following expression for the Laplacian of the trace of the hygro-elastic strain, Δεkk71

εkk,ll = Δεkk =
1 − 2ν

E
Δσkk + 3ηΔC. (11)72
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Combining (9) to (11) yields73

1 − 2ν

E
Δσkk + 3ηΔC +

ν

E
σkk,ll − ηΔC = 0 ⇔ 1 − 2ν + ν

E
Δσkk + 2ηΔC = 0. (12)74

75

Δσkk = −2η
E

1 − ν
ΔC. (13)76

In the present work, the trace of stress tensor σkk is considered to correspond to the following sum of an external mechanical77

load, Pex and a hygroscopic pressure, Pis, so that σkk = −3 (Pex + Pis) where Pex is a constant parameter. Thus, ΔPex = 078

and Eq. (13) can be reduced to79

ΔPis =
2E

3 (1 − ν)
ηΔC =

α

A0
ηΔC, (14)80

where the constants α and A0 have already been defined in previous works [18], as81

α

A0
=

2E

3 (1 − ν)
, (15)82

83

A0 =
3ωw

RTρ0

, (16)84

where ρ0 is the density of polymer resin at free strain state, whereas ωw stands for the molar mass of water, T the tempera-85

ture and R the ideal gas constant.86

We consider a plate whose lateral dimensions are large compared to the thickness. As a consequence, the diffusion is87

considered to occur along the direction x, only. The unidirectional solution of Eq. (14) satisfies the following general form88

Pis (x, t) =
α

A0
ηC (x, t) + k1 (t)x + k2 (t) . (17)89

The constants k1(t) and k2(t) are deduced from the equilibrium conditions, in which L stands for the thickness of the sample90 ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L∫
0

Pis (x, t)dx = 0,

L∫
0

Pis (x, t)xdx = 0.

(18)91

The solutions satisfying the system of Eqs. (18) are92

k1 (t) =
6
L3

α

A0
η

(
L2C (t) − 2I

)
, (19)93

94

k2 (t) =
2
L2

α

A0
η

(
3I − 2L2C (t)

)
, (20)95

where96

C (t) =
1
L

L∫
0

C (x, t) dx, (21)97

98

I =

L∫
0

C (x, t)xdx. (22)99

Introducing (19)-(20) in the general expression (17) for the internal pressure yields100

Pis (x, t) =
α

A0
η

(
C (x, t) − 4C (t)

)
+

6
L3

α

A0
ηx

(
L2C (t) − 2I

)
+

6
L2

α

A0
ηI. (23)101

In the case that a symmetrical hygroscopic load is applied on the boundaries of the structure, C(x, t) = C(L − x, t). As a102

result, the integration I is equal to L2C(t)
2 . Hence, the corresponding hygroscopic pressure is given by the simplified form103

Pis (x, t) = α
A0

η
(
C (x, t) − C (t)

)
.104

www.zamm-journal.org c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



4 B. E. Sar et al.: Multi-physics modelling of the diffusive behaviour of polymers

3 Chemical potential105

The chemical potential of water μ̃w is defined as the partial derivative of free energy of Helmholtz, F = F0 + nfw (C) +106

VεW , with respect to the amount of water nw. Where F0 is the free energy of the dry stress-free polymer, fw(C) is the107

variation of the free energy per mole of dry polymer, due to the addition of water when the polymer is free to swell, n108

and Vε are respectively the amount of polymer and its volume at any stage, whereas W denotes the hygro-elastic strain109

energy [6]110

μ̃w (C) =
∂F

∂nw
=

∂F

∂C

∂C

∂nw
. (24)111

The moisture content in the polymer is calculated through C = nwωw
nω

∂c
∂ne

= ∂
∂ne

(
neωe

npωp

)
= 1

np

ωe

ωp
, here ωw, ω stand for112

respectively the molar mass of water and polymer.113

The hygro-elastic strain energy written as a function of both the bulk modulus k and shear modulus G, is defined by114

W =
1
2
σ : εel =

k

2
(trε − 3ηC)2 + Ge : e, (25)115

where εel is the elastic strain, ε being the total strain, whereas e is the deviatoric strain tensor.116

Introducing f
/
w(C) = ∂[fw(C)]

∂C , one obtains the following expression for the derivative of the Helmholtz free energy117

with respect to the moisture content118

∂F

∂C
=

∂F0

∂C
+ nf/

w(C) + W
∂Vε

∂C
+ Vε

∂W

∂C
.
∂F

∂c
119

=
∂

∂c

(
F0 + npfe (c) + VpW

)
=

∂F0

∂c
+

∂[npfe (c)]
∂c

+
∂(V pW )

∂c
. (26)120

121

During the moisture diffusion process, we take into account the evolution of the volume occupied by the polymer, and the122

resulting variation of its density, through:123

Vε

V0
=

ρ0

ρε
= trε + 1, (27)124

where Vε, V0, ρ0, ρε stand respectively for the polymer volume and its density at present (strained) and initial (strain-free)125

states126

∂Vε

∂C
=

∂Vε

∂ trε
∂ trε
∂C

= V0
∂ trε
∂C

=
nω

ρ0

∂ trε
∂C

. (28)127

Let us consider (27) as well as the equation e : e = 0 (which comes from the specific case, considered here, of a macro-128

scopically isotropic polymer submitted to a hydrostatic pressure) in the expression of the hygro-elastic strain energy (25).129

As a result, the partial derivative of Helmholtz free energy F with respect to the moisture content (26) transforms as follows130

∂F

∂C
= nf/

w (C) + Vεk (trε − 3ηC)
∂ (trε − 3ηC)

∂C
+

k

2
(trε − 3ηC)2

nω

ρ0

∂ trε
∂C

. (29)131

Accounting for Eq. (29), the chemical potential (24) eventually satisfies132

μ̃w (C, trε) =
ωw

ω
f/
w (C) + k

ωw

ρ0
(trε − 3ηC)

(
∂ trε
∂C

− 3η

)
(trε + 1) +

ωw

ρ0

k

2
(trε − 3ηC)2

∂ trε
∂C

. (30)133

Besides, the trace of the strain tensor can be expressed as a function of the total pressure as follows134

trε =
σkk

3k
+ 3ηC = −P

k
+ 3ηC = −Pex + Pis

k
+ 3ηC. (31)135

Taking into account the expression (21) obtained for the internal pressure induced notably by the differential swelling, the136

derivative of relation (31) with respect to the moisture content satisfies137

∂ trε
∂C

= η
3A0k − α

A0k
. (32)138
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According to Eq. (32) and considering that ωw
ω f

/
w(C) = μ0 +RT ln C

C0
, the relation previously obtained for the expression139

of the chemical potential (30) can be developed as follows140

μ̃w (C, trε) = μ0 + RT ln
C

C0
− 3ηωwk

ρ0
(trε − 3ηC) (trε + 1)141

+
ηωw

A0ρ0
(3A0k − α) (trε − 3ηC) (trε + 1) +

ηωw

A0ρ0

3A0k − α

2
(trε − 3ηC)2 . (33)142

143

4 Equation of model144

Generally, the diffusion equation is deduced from the conservation of mass equation [13] in which the first derivative of145

moisture with respect to time, Ċ, relates to the diffusion flux of moisture, Ji, as follows146

Ċ + Ji,i = 0. (34)147

In the present work, the diffusion flux of moisture was written in term of chemical potential μ̃w as proposed, for instance,148

in [14]149

Ji = −DC

RT

→
grad μ̃w, (35)150

where D is the diffusion coefficient in [mm2/s], R is the gas constant in [J/(mol.K)], and T the absolute temperature [K].151

We obtain the constitutive equation by using the mass conservation equation (34) in which the chemical potential of152

water has been written as a function of both the trace of the strains and the moisture content153

Ċ =
D

RT
div

[
C

( →
grad μ̃w (C, trε)

)]
Ċ =

D

RT
div

[
C

(
∂μ̃e

∂μe

�gradμ̃e (μe, P)
)]

. (36)154

In vector calculus, the gradient operator satisfies the following linear property155

→
grad μ̃w (C, trε) =

∂μ̃w

∂C

→
gradC +

∂μ̃w

∂ trε

→
grad trε. (37)156

Introducing the development (37) in (36) yields157

Ċ =
D

RT
div

[
C

(
∂μ̃w

∂C

→
gradC +

∂μ̃w

∂ trε

→
grad trε

)]
. (38)158

The partial derivatives of the chemical potential by either the moisture content C or the strain trace trε can respectively be159

written as160

∂μ̃w (C, trε)
∂C

=
RT

C
+

9η2ωwk

ρ0
(trε + 1) − 3η2ωw

A0ρ0
(3A0k − α) (2 trε − 3ηC + 1) , (39)161

162

∂μ̃w (C, trε)
∂ trε

= − 3ηωwk

ρ0
(2 trε − 3ηC + 1) +

ηωw

A0ρ0
(3A0k − α) (3 trε − 6ηC + 1) . (40)163

Combining Eqs. (39) and (40) with the diffusion equation (38) leads to164

Ċ =
D

RT
div

[
C

{[
RT

C
+

9η2kωw

ρ0
( trε + 1)

]
→

gradC − 3ηωwk

ρ0
(2 trε − 3ηC + 1)

→
grad trε

}]
165

+
D

RT
div

[
C

{
− 3η2ωw

A0ρ0
(3A0k − α) (2 trε − 3ηC + 1)

→
gradC

}]
166

+
D

RT
div

[
C

{
ηωw

A0ρ0
(3A0k − α) (3 trε − 6ηC + 1)

→
grad trε

}]
. (41)167

168

Further simplifications applied to the previous form (41) enable us to write169

Ċ =
D

RT
div

[
C

{[
RT

C
+

9η2kωw

ρ0
(trε + 1)

]
→

gradC − 3ηωwk

ρ0
(2 trε − 3ηC + 1)

→
grad trε

}]
+ g, (42)170
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where171

g =
D

RT
div

[
C

{
− 3η2ωw

A0ρ0
(3A0k − α) (2 trε − 3ηC + 1)

→
gradC

}]
172

+
D

RT
div

[
C

{
ηωw

A0ρ0
(3A0k − α) (3 trε − 6ηC + 1)

→
grad trε

}]
. (43)173

174

Equation (43) yields the following developed expression175

g = D
η (3A0k − α)

3

{
− 3η (2 trε − 3ηC + 1)CΔC − 3η (2 trε − 6ηC + 1)

→
gradC

→
gradC176

+ (3 trε − 6ηC + 1)CΔ (trε) + (3 trε − 18ηC + 1)
→

gradC
→

grad trε + 3C
→

grad trε
→

grad trε

}
. (44)177

178

Finally, the factor g could be written as follows179

g = Dξ

[
z1

∂2C

∂x2
+ z2

(
∂C

∂x

)2

+ z3
∂C

∂x
+ 3C

{
6
L3

α

A0k
η

(
L2C(t) − 2I

)2
}]

, (45)180

where181

z1 = −3η (2 trε − 3ηC + 1) C + (3 trε − 6ηC + 1)C
3A0k − α

A0k
η, (46)182

183

z2 = −3η (2 trε − 6ηC + 1) + (3 trε − 18ηC + 1)
3A0k − α

A0k
η + 3C

(
3A0k − α

A0k
η

)2

, (47)184

185

z3 = − 6
L3

α

A0k
η

(
L2C(t) − 2I

)
(3 trε − 18ηC + 1) − 36C

L3

α

A0k

(
L2C(t) − 2I

) 3A0k − α

A0k
η2, (48)186

187

ξ =
3A0k − α

3
η. (49)188

Using the same method, the first term of the right hand side of Eq. (42) was developed, and then simplified. The resulting189

time-dependent diffusive behavior for a polymer plate subjected to an unsymmetrical humid ambient load is given by190

Ċ = D

[ (
1 + V1η

2C + V2η
3C2

) ∂2C

∂x2
+ η2 (V3 + V4C)

(
∂C

∂x

)2

191

− 6
L3

α

A0k
η

(
L2C(t) − 2I

) (
V5 + V6η

2C
) ∂C

∂x
− 72

L6

α2

A0k
η3

(
L2C(t) − 2I

)2

C

]
+ g, (50)192

193

where194

V1 = −3A0k trε + 2α trε + α, V2 = 9A0k − 3α, V3 = −3A0k trε + 2α trε + α,195

V4 = ηV2 − 2ηα2

A0k
, V5 = 2ηA0 trε + A0η, V6 = 3A0 − 4

α

k
.196

197

Significant simplifications of Eq. (50) can be made when the polymer structure is subjected to symmetrical moisture con-198

ditions. This requires that the equation L2C(t) − 2I = 0 be satisfied.199

The resulting behavior law then respects the following form200

Ċ = D

[(
1 + V1η

2C + V2η
3C2 + ξz1

) ∂2C

∂x2
+ η2 (V3 + V4C + ξz2)

(
∂C

∂x

)2
]

. (51)201
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5 Boundary conditions202

The boundary condition is obtained by equating the chemical potential of water in humid air,203

μ̂w = μ̂0 + RT ln pw

p0
(where204

μ̂0 is the chemical potential of water in humid air at the reference pressure205

p0, the partial pressure of water being pw), with the generalized chemical potential of the polymer, μ̃w, the expression206

for which is given by Eq. (33) in the present work. This statement yields the following equation207

μ̃w (C, trε) = μ0 + RT ln
C

C0
− 3ηωwk

ρ0
( trε − 3ηC) ( trε + 1)208

+
ηωw

A0ρ0
(3A0k − α) ( trε − 3ηC) ( trε + 1) +

ηωw

A0ρ0

3A0k − α

2
(trε − 3ηC)2 . (52)209

210

The boundary condition is obviously only satisfied at the specific positions xb denoting the boundaries between the ambient211

fluid and the polymer. The equalization between the chemical potential of water in humid air and the generalized chemical212

potential of water in the system leads to the following moisture conditions at the structure boundaries213

C (xb, t) =
pw

p0
C0 exp

[
μ̂0 − μ0

RT
+ ηkA0 (trε − 3ηC) (trε + 1)214

− η

3
(3A0k − α) (trε − 3ηC) (trε + 1) − η

6
(3A0k − α) (trε − 3ηC)2

]
. (53)215

216

Equation (53) could also be written as a function of the total pressure P instead of tr ε owing to their relation as expressed217

by (31). One can then write:218

C (xb, t) =
C0

p0
pw exp

(
μ̂0 − μ0

RT

)
exp

[
ηkA0

(
−P

k

) (
−P

k
+ 3ηC + 1

)
219

− η

3
(3A0k − α)

(
−P

k

) (
−P

k
+ 3ηC + 1

)
− η

6
(3A0k − α)

(
−P

k

)2
]
. (54)220

221

Introducing Henry’s law, S = C0
p0

exp
(

μ̂0−μ0
RT

)
into Eq. (54), the boundary condition for the moisture content becomes222

C
(
xb,t

)
= Spw exp

[(
ηA0

k
− η

3k2 (3A0k − α)
) (

P 2 − 3ηCkP − kP
) − η

6k2 (3A0k − α)P 2

]
. (55)223

6 Numerical results224

The numerical simulations correspond to a 4 mm thick plate made of epoxy resin whose Young modulus is 3.65 GPa and225

Poisson’s ratio is 0.36. The polymer plate is subjected to moisture diffusion while experiencing a hydrostatic pressure load.226

We would like to simulate the moisture absorption within the above described material in the cases when a whether227

symmetrical or an unsymmetrical moisture conditions takes place at the opposite edges of the plate.228

6.1 Symmetrical moisture load229

The opposite surfaces of the plate are assumed to be submitted to the same relative humidity, which correspond to a230

reference moisture content level C0 of 5% (in the case that the multiphysics effects are neglected). The mathematical231

equation governing the diffusion corresponds to Eq. (51), whereas the boundary condition is obtained owing to expression232

(55).233

Figure 1 shows the time-dependent evolution of the macroscopic (average) moisture content, as a function of the CME:234

η = 0; η = 0.6 or η = 1, at an imposed pressure of 1 MPa. Increasing CME reduces the maximum moisture absorption235

capacity of the polymer as indicated by the evolution of the average moisture content in the steady state.236

According to Fig. 2, the moisture uptake in the polymer resin decreases with the reduction of the relative humidity on237

the second side of the plate. Non-linearities, similar to those observed on Fig. 1, occur in the presently considered cases,238

also. The previously so-called “delay time” before the establishment of a Fickian-like diffusion process can be observed,239
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as well. The dependence of the apparent diffusion coefficient with time increases with the deviation of the environmental240

conditions applied to the opposite boundaries of the plate. Besides, the maximum moisture content attained in permanent241

regime clearly does not vary linearly with the boundary condition applied to the second surface of the plate.242

According to Fig. 1, the multiphysics model predicts a fickian diffusion process in the case that the coefficient of moisture243

absorption of the polymer is assumed to be null. Discrepancies from the typical Fickian kinetics occur is predicted by the244

model when η �= 0. In particular, the apparent moisture diffusion coefficient of the polymer plate (i.e. the slope of the curves245

drawn on Fig. 1) varies at the beginning of the diffusion process (i.e. the slope of the curves are not independent from the246

ratio
√

t
e anymore when at the initial stage, when t tends towards 0). Thus, a sort of delay time is predicted, during which247

the instantaneous moisture diffusion coefficient varies. This short period of time is followed by a pseudo-fickian diffusion248

regime with a constant apparent diffusion coefficient.249

These discrepancies significantly increase with the coefficient of moisture expansion. Eventually, the coefficient of250

moisture absorption affects both the transient and permanent stages of the diffusion process predicted according to the251

multiphysics model.252

6.2 Unsymmetrical moisture load253

Let us consider the case when the opposite surfaces of the plate are submitted to different relative humidity levels. The254

environmental conditions correspond to a reference moisture content level C0 of 5% on the first side of the plate, whereas255

it is either equal to 0%, 2.5% or 5% on the second side.256

The moisture diffusion process is computed through Eq. (50), assuming the polymer to present a typical coefficient of257

moisture expansion: η = 0.6. The obtained results for the volume average of the moisture content are shown as a function258

of the classical
√

t
e ratio on Fig. 2 below.259
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Fig. 1 Effect of CME on moisture sorption (Pex = 1 MPa). Fig. 2 Average moisture content predicted in a polymer plate
submitted to unsymmetrical humid conditions. Cs2 stands for
the moisture content reference level assumed to be applied on
the second side of the plate.

7 Conclusions260

This work is focused on developing an enhanced version of the model describing the diffusion of moisture in polymers261

based on the so-called thermodynamical approach first introduced by Derrien and Gilormini [6], and then improved by Sar et262

al. [18]. For the first time, in contrast to both those references, the present paper handles the differential swelling experienced263

by the polymer during the moisture diffusion process. The effects induced by the through-thickness differential swelling264

on the time-dependent diffusion are properly taken into account in the mathematical development of the model, through265

additional terms involving partial derivatives of the volume strain by the moisture content. Obviously, the resulting multi-266

physics kinetics law changes by comparison with the original (simplified) version of the model. The expressions satisfied267

by the boundary conditions for the moisture have been determined both for the cases where the material is considered268
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as subjected to symmetrical moisture loads, and in cases when heterogeneous humid conditions are experienced by the269

polymer structure.270

Some preliminary results obtained through computations demonstrate that the developed model enables to predict271

anomalous (i.e. non Fickian) moisture uptakes. The anomalies of diffusion do mostly take place at both the very begin-272

ning of the diffusion process and the permanent regime. Non-linearities of the weight gain are thus predicted when the273

moisture sorption starts. After a short time, these non-linearities vanish, so that a pseudo-fickian moisture uptake follows.274

This pseudo-fickian regime corresponds to an instantaneous moisture diffusion coefficient independent from the
√

t
e ratio.275

At the end of the process, the permanent regime is characterized by a maximum moisture absorption capacity, the value of276

which depends on materials properties such as the coefficients of moisture expansion, as an example.277

Further work will be dedicated to a thorough investigation of this new version of the model through extensive numerical278

tests.279

Future work will focus on further enhancements, such as accounting for reversible plasticization effects experienced by280

the polymer during the moisture diffusion process, (i.e. the reduction of the material stiffness induced by the presence of281

water).282
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