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Abstract
Scale-transition models, such as Eshelby-Kröner self-consistent framework, which are often
used for predicting the effective behavior of heterogeneous materials or estimating the
distribution of local states from the knowledge of the corresponding macroscopic quantities,
require the extensive use of set averages. The present paper is devoted to the comparison of
the numerical results provided in pure elasticity by Eshelby-Kröner model depending on the
average type chosen for achieving set average operations: either the traditional arithmetic
mean or the geometric average. Various numerical applications of the model to the case of
predicting either the effective stiffness or the lattice strains of single-phase polycrystals will
be provided. The particular case when an extreme grain-shape occurs will also be
investigated.

Keywords: Scale transition model, sets averages, geometric mean, arithmetic mean, Eshelby-
Kröner self-consistent model.

1. Introduction

An enhanced interpretation of the mechanical behaviour observed during experiments
performed on polycrystalline samples can be achieved using scale transition models based on
the description of interactions among the grains constituting the material and the polycrystal
itself. Thus, these scale transition models were also recently called “grain-interaction models”
[1].
Generally, sets averages are involved in any grain interaction model and required in order to
determine the effective properties of the polycrystal from the properties of the differently
oriented grains. The scale transition relations existing between the single grain/crystal
properties and those of the polycrystals vary from one model to another. Historically, however
arithmetic averages only were proposed and used to perform such calculations [2-8]. More
recently, the idea of replacing arithmetic averages by geometric averages was proposed by
Morawiec [9]. This new solution, introduced in particular cases by Aleksandrov and
Aisenberg [10], is based on the condition of commutation of inversion and averaging
operations that is one fundamental property observed in practice in materials sciences. One
new scale transition model, the Bulk Path Geo (BPG) was recently built upon this constitutive
assumption [11-12]. Numerical computations of the effective elastic behaviour of possibly
textured polycrystals were achieved. It was shown by the authors that Young’s modulus
predicted by the BPG approximation was very close to the numerical values provided by
Neerfeld-Hill or Eshelby Kröner model using arithmetic averages.
Nevertheless, the Bulk Path Geo remains independent from any other model. Thus the
closeness of its predictions with those of others models does not prove that geometric
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averages could be considered as a reliable alternative to the classical arithmetic averages in
the field of computational materials science. This is of importance when experimental results
have to be interpreted using micro-mechanical models in order to deduce mechanical
constants like Single-crystal Elastic Constants (SEC). Until now, only the type of assumed
grain-interactions was considered to play a role in such studies. But recently, SEC were
determined using either geometric [13] or arithmetic averages, and the importance of the
choice of such a set averaging method on the final result has to be investigated.
In the present work, Eshelby-Kröner Self-Consistent scale transition models involving either
arithmetic averages or geometric averages will be used to predict the mechanical properties of
various single-phase polycrystals in pure elasticity regime. The present paper derives from the
recently published theoretical investigation of a product-based, “geometric”, deviation of the
mechanical states experienced by a single crystallite from the corresponding macroscopic
quantities, achieved in [14]. Moreover, the influence of a morphologic texture will be
considered through the introduction of extreme grain shapes in the computations. Besides,
another section of the present paper is devoted to investigating the mechanical states
experienced by the diffracting volume of polycrystals, depending on the chosen set average
method: either the arithmetic or the geometric mean. The obtained results will be compared
and discussed in order to conclude about the equivalence or not of the two, considered in this
work, grain average types.

2. Short summary of the theoretical framework

2.1 Definition of the different scales of the representation

In the following, it is useful to distinguish three types of averages of a tensor A (as for
example the strain tensor ε), that correspond to the three considered scales of the
representation.
(i) Averages of a tensor over all grains with a particular crystallographic orientation in the

volume considered: this average will be denoted by the symbol AII(Ω), where Ω
represents a vector in the three-dimensional crystallographic orientation (Euler) space
and defines the crystallographic orientation (for details, see, for example, [15]. Ω = (α,
β, γ), where α , β and γ are three Euler angles. The convention of Roe [16] for the
definition of the Euler angles will be adopted (see also [15]). This average defines the
behaviour of the material at the so-called “mesoscopic scale”, denoted by the
superscript II. Since the properties and mechanical states are identical for a given
crystallographic orientation, there is no numerical operation to perform, in practice, in
order to achieve the determination of any mesoscopic quantity.

(ii) Averages over diffracting grains: in polycrystalline materials, diffraction methods
usually provide information probed from numerous grains. As a result, the gathered
peak positions are average values [17-19]. However, since diffraction can occur only
when the normal of these grains bisect the incident and diffracted beams in the
classical case that monochromatic radiation is employed, the averaging does not occur
over all of the grains in the irradiated volume, but over the particular subset of the
crystallites for which the diffracting planes are perpendicular to the chosen
measurement direction, instead. For a hkl diffraction line, the group of diffracting
crystallites is selected by specifying the hkl of the reflection considered and the
orientation of the diffraction vector with respect to the specimen reference frame,
which can be identified by the angles , as defined on figure . For details, see also
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[20]. This type of average over the diffracting volume will be denoted by
  DVADVA  where the superscript DV indicates the diffracting volume.

(iii) Averages over all crystallographically differently oriented grains in the polycrystal:
this average will be denoted by angular brackets   IAIA  . This notation will be
used to define the properties and mechanical states at the so-called I superscripted
“macroscopic scale”.

Two numerical methods dedicated to the determination of tensors averages over the
polycrystal or the diffracting grains (respectively   IA  and   DVA  ) will be described
in subsection 2.2 below.

2.2 Performing geometric and arithmetic averages

Averages over sets of differently oriented grains can be performed using either the classical
arithmetic approximation, or the recently proposed geometric approximation. Let us consider
a subset of N grains. Each i-subscripted grain (i varying from 1 to N) has a specific
orientation Ωi=(αi, βi, γi). That crystallographic subset actually corresponds to a particular
volume fraction fi which is returned by the Orientation Distribution Function obtained through
texture analysis.
The arithmetic approximation assumes that tensor averages correspond to the sum of the
mesoscopic quantities, multiplied by the volume fraction fi of each grain, over the considered
volume (polycrystal in the case of the macroscopic scale), and divided by the total volume
fraction of the considered subset of grains:
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In the case that the diffracting volume is concerned, only the grains contributing to the
diffraction peak have to be taken into account in the summation.

The geometric mean of a set of weighted positive data is defined as the fth power of the
product of all the members of the set:
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In the case that the diffracting volume is concerned, only the grains to the diffraction peak
have to be taken into account in the product.
The practical realization of such a geometric average on even rank tensor was detailed in
[9, 21-22].
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In section 3, Eshelby-Kröner self-consistent elastic model featuring one or the other averaging
type, will be studied. Numerical computations performed according to the geometric or the
arithmetic approximations will be compared and discussed.

2.3 Grain-shape / morphological texture

For the calculation of mechanical and diffraction elastic constants of polycrystals with a
grain-shape texture, the treatment will be restricted to polycrystals consisting of ellipsoidal
grains. It will be assumed that the ellipsoidal grains exhibit identical orientations of their
principal axes in the specimen frame of reference, i.e. the ellipsoidal grains are aligned along
common axes (an ideal grain-shape texture occurs). Only an ideal grain-shape texture is
considered in the following, as only in this case unique mechanical elastic constants and X-
ray stress factors can be calculated employing the Eshelby-Kröner model (for a more detailed
discussion of the effect of a non-ideal morphological texture, see [23]).

Note that the principal axes of a grain are only related to the external (geometrical)
shape of the grain. Thereby nothing is prescribed regarding the crystallographic orientation of
the grain (crystallite). In general, the (ellipsoidal) grains constituting the specimen will have
different crystallographic orientations.

The shape of the grains will be described by a shape parameter η, which is defined as
the ratio of the principal axis of the ellipsoid in the z-direction (a3) of the specimen frame of
reference to the principal axes of the ellipsoid in the x-direction (a1) and the y-direction (a2) in
the specimen frame of reference, respectively:

1a
2a

1a
3a

η  (3)

Thus, the considered ellipsoidal grains present rotational symmetry with respect to the surface
normal of the specimen.

3. Modelling the elastic behaviour of polycrystals according to Eshelby-Kröner self-
consistent model – comparison between geometric and arithmetic averaging

3.1. Eshelby-Kröner self-consistent elastic model

3.1.1 Determination of the macroscopic elastic stiffness according to Eshelby-Kröner
hypotheses

In order to calculate the elastic constants of a polycrystal from single-crystal elastic data, the
crystallites surrounding an individual grain in a polycrystal are conceived as an elastically
homogenous matrix with the elastic properties of the entire polycrystal in the Eshelby-Kröner
grain-interaction model [6-7]. Following this reasoning, the calculation of the elastic constants
of a polycrystal requires the calculation of the elastic interactions existing between an
inclusion (a grain) and the embedding homogeneous matrix (the polycrystal). Traditionally, a
spherical shape of the inclusion is considered [7]. It goes without saying that the Eshelby-
Kröner model based on a spherical inclusion will only work for polycrystals consisting of (on
average) spherical, equi-axed grains.
The effect of a grain-shape (morphological) texture on mechanical and diffraction elastic
constants can be considered in the traditional Eshelby-Kröner model by considering
ellipsoidal inclusions with their principal axes aligned along common directions in the
specimen frame of reference. While Eshelby-Kröner model can handle a single grain-
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morphology, shared by every inclusion constituting the Representative Equivalent Volume
(REV) of the material, this theoretical approach fails to represent a morphologic texture
featuring various grain shapes and/or a relative disorientation of the morphologies coexisting
among the same REV. It was actually numerically shown by [24], that in such a situation, the
classical EKSC model does not simultaneously fulfil both the so-called “Hill’s average
relations over the mechanical states”, historically established in [25], anymore. An enhanced
version of the classical Eshelby-Kröner Self-Consistent model, the so-called « Generalized
Self-Consistent » (GSC) model, is required in order to properly deal with a real morphologic
microstructure. As an example, the structure of Ti-17 polycrystal often consists of acicular α
(needle-shaped crystallites) mixed to slightly equiaxed prior β grains. The morphologic
microstructure exhibited by Ti-17 α-phase cannot be properly taken into account through the
traditional EKSC model. A recent investigation taking advantage of the GSC model, however,
was specifically built in order to model such a material [26].
Nevertheless, the present study is based on a demonstration, provided by [14], established
within the classical Eshelby-Kröner model domain of application. As a consequence, this
paper will only deal with polycrystals made of ellipsoidal inclusions with their principal axes
aligned along common directions in the specimen frame of reference. To characterise the
grain-shape texture, the convention introduced in Section 2.3 (Grain-shape / morphological
texture) will be adopted. The effect of a grain-shape texture on the mechanical elastic
constants has been considered by [23, 27-28].

Within Eshelby-Kröner model, the macroscopic stiffness CI is calculated iteratively through
an averaging procedure over every crystallite as follows:

      1
:


 ICΩCE:ΩCC IIIIIII (4)

Where  IIC stands for the single-crystal elastic stiffness, I is the 4th-order Identity tensor,
whereas EI is Morris tensor, which can be written from the Eshelby tensor I

eshS thanks to the
following relation:

1
 II

esh
I CSE (5)

Morris tensor is written as an integral that must be numerically computed, except for a few
simplified cases. The interested reader can refer to [28-30], where expressions of Morris
tensor as well as a detailed presentation of Eshelby-Kröner model, are provided. Because of
the complex expression of the integrand featured within Morris tensor, one cannot generally
give an analytical expression of EI, except for some specific configurations (fibers, discs and
spheres in particular). The case of macroscopically transversely isotropic materials made of
either aligned fibers parallel to the longitudinal direction or flat-discs the normal of which is
parallel to the normal direction of the sample, were, as an example extensively treated in [31-
32].

The above presented fundamental equation (4) is actually compatible with either the
historical, classical arithmetic framework or, as demonstrated for the first time in [14], with a
product-based, “geometric” rewriting of the polarization tensors used to express the deviation
of the mechanical states experienced by a single crystallite from the corresponding
macroscopic quantities. The first formulation results in a sum of terms, whereas the second
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involves products of factors. This fact yields a privileged (but not exclusive) link between
each formulation and the corresponding averaging operation-type. It was demonstrated in [14]
that the geometric polarization tensors are proportional to either the strain localization tensor
or the stress concentration tensor, two quantities on which many scale transition models are
based upon, for practical applications, but also because of their strong physical meaning. On
the contrary, the classical arithmetic polarization tensors did hold very little appeal on the
scientific community working on this field of research. Since the arithmetic mean is
considered as better suited for achieving averages over sets of sums of terms, it was
historically clearly the most appropriate solution, in the mathematical framework of Eshelby-
Kröner model. However, according to [14] the geometric set average-type, which is, in
statistics, considered as better suited for performing such mathematical operations over
products of factors, would also be relevant, since the corresponding analytical writing of
Eshelby-Kröner model involves more physically meaningful intermediate quantities. Thus,
according to the results obtained in [14], either the arithmetic, or the geometric mean, could
be employed at the discretion of the user in order to perform calculations according to
Eshelby-Kröner self-consistent model.

3.1.2 Computation of the lattice strains according to Eshelby-Kröner model

X-Ray stress analysis is an experimental method that enables the determination of the residual
[19] or applied [33] average stress in the diffracting volume of a studied phase of a material
from the measurement of the so-called (elastic) “lattice strains”. The lattice strains (hkl)
actually correspond to the average of the mesoscopic strains over the grains suitably aligned
to the X-ray beam path (as described in subsections 2.1 and 2.2). The projection of the
mesoscopic strains on the measurement direction is defined by the two angles and
asshown on figure 1 [19]:
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In relation (6) above, the superscript t denotes the transposition of the vector.

The computation of lattice strains, following the classical arithmetic averaging procedure is
straightforward, as indicated in subsection 2.2. In the case that the geometric average is
preferred, some precautions have to be considered since the mesoscopic strains experienced
by the grains contributing to the diffraction may generally have some negative components,
which are incompatible with the application of the power product (2) necessary to achieve the
calculation of (6):

 First, the classical scale transition relation linking the mesoscopic strains to the
macroscopic strains within Eshelby-Kröner self-consistent model (refer to [34] for
details) has to be considered:

      IIIIIII ICΩCE 


::
1 (7)

 Then, (7) is introduced in equation (6), which transforms as follows:
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The term I being constant, it can be factorized in the average over the diffracting volume
featured in the right-hand member of equation (8):

    
 n.::.nε

1t

ψφ,
I

DV
IIIIDV ICΩCE (9)

In (8), the lattice strain over the diffracting volume is actually written under the form of the
average of the elementary mesoscopic lattice strains  II

ψφ,ε of each crystallite contributing
to the diffracted beam. Such a mesoscopic lattice strain would satisfy:

    
 n.::.nε

1t

ψφ,
IIIIIII ICΩCE (10)

 II
ψφ,ε is obviously a scalar. In practice, when the applied load is sufficiently high, the sign

of all the mesoscopic lattice strains is often identical on the subset of grains constituting the
diffracting volume, whatever the concerned crystallographic orientations. While this condition
is satisfied, the power product involved by the geometric mean can be applied to the
following rewritten form of equation (9):

       
 n.::.nεε

1t

ψφ,ψφ,
I

DV
IIIIIIDV ICΩCEsign (11)

where  



 IIsign ψφ,ε is respectively –1 in the case that each mesoscopic lattice strain (10)

involved in the averaging operation (11) is compressive, and +1, in the case that each of the
diffracting grains experience tensile lattice strains in the probed {} direction. Please take
care of the fact that the geometric average cannot be computed in the case that both tensile
and compressive lattice strains are simultaneously experienced by the subset of grains
constituting the diffracting volume of the material.

3.2 Examples – numerical comparisons between geometric and arithmetic averaging

3.2.1 Prediction of macroscopic elasticity constants in single-phase materials.
Investigation of grain-shape effects.

Computations of the macroscopic elastic stiffness were performed following the formalism
described in subsection 3.1, using either the arithmetic or the geometric averages. In order to
avoid statistical errors, the same set of 2000 crystallographic orientations was kept for every
calculation. Moreover the materials were considered as crystallographically untextured. Thus
the volume fraction of each orientation was assumed to be identical. In order to check the
possible morphological texture related effects, three extreme grain shapes were successively
considered during the computations: spherical grains (η = 1), disc-shaped grains (η → 0) and,
finally, needle-shaped grains (η → ∞).
In order to iteratively calculate the stiffness tensor using (4), a starting value is required for
CI. According to the literature, elastic stiffness predicted by Eshelby-Kröner model involving
arithmetic averaging respectively converges towards Neerfeld [4] – Hill [5], Vook-Witt [35]
and inverse Vook-Witt [36] estimations, in the cases that equi-axed (spherical), disc-shaped,
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and needle (cigar)-shaped grains, respectively, are considered [32, 37]. Thus, the three last-
cited approximations were used in the present work in order to provide adequate starting
value of CI for the considered morphologies.
The single-crystal elastic constants required for performing the computations were taken from
the tables provided by Chung and Buessem [38].
Obtained results are depicted on figure 2, where the relative deviation between stiffness
components calculated according to the geometric and the arithmetic approach

(i.e.    
 arithmeticC

arithmeticCgeometricC
I
ij

I
ij

I
ij  ) are given for various single-phase cubic polycrystals.

The following properties are remarkable:
i) Geometric and arithmetic averages do not generally lead to identical

macroscopic stiffness tensors.
ii) Components of the stiffness tensor estimated through geometric mean are more

compliant than (i.e. their numerical value is always inferior to) the
corresponding component deduced from the classical arithmetic average.

iii) The relative deviation    
 arithmeticC

arithmeticCgeometricC
I
ij

I
ij

I
ij  increases in first

approximation with the deviation from 1 (which correspond to the elastic
isotropy) of the considered material’s single-crystal coefficient of elastic
anisotropy Ac (cf. table 1). Conversely, the relative deviation between stiffness
components calculated according to the two studied averaging type tends
towards zero in the cases that the single-crystal exhibits an almost isotropic
elastic behaviour (aluminum, tungsten, molybdenum and diamond-C).
This result was attributed to the relatively weak heterogeneities existing
between the mechanical elasticity constants exhibited by the grains constituting
a single-phase polycrystal. For metallic single-phase materials, the elastic
heterogeneities existing at the mesoscopic scale are actually only induced by
the coefficient of elastic anisotropy of the single crystal, and remain rather
small. This property of single-phase metallic polycrystals explains the good
agreement observed for the estimated effective macroscopic stiffness whatever
the choice of averaging type, in the case that the material is assumed to deform
according to purely elastic mechanism (figure 2).

iv) The relative deviation between stiffnesses calculated according to the
arithmetic or geometric mean strongly depends on the grain shape assumed
during the computations. For instance, I

33C values estimated for disc-shaped
grains are almost identical with the two types of averages, even for materials
having strongly anisotropic single-crystals like copper; whereas the same
component calculated assuming cigar-shaped grains noticeably varies from one
average type to another.
Grain-shape texture induces a change in the distribution of the mechanical
elastic heterogeneities experienced by a single-phase polycrystal at mesoscopic
scale. The interested reader can refer to [32] where that specific issue was
extensively investigated. Nevertheless, the elastic stiffness heterogeneities
remains of the same order of magnitude whatever the considered extreme
grain-morphology, according to figure 2. Thus, the predicted macroscopic
stiffness of a single-phase polycrystal is almost independent on the set-average
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method chosen in order to achieve the computations, even in the case that an
extreme grain-morphology is accounted for.

3.2.2 Influence of the chosen averaging type on the elastic mechanical behavior
calculated for the diffracting volume of the material

Lattice strains in single-phase SiC corresponding to an applied macroscopic load of 100 MPa
in the longitudinal direction of the sample reference frame were calculated using Eshelby-
Kröner model for various conditions. Three different calculation procedures were envisaged:

- 1) Full arithmetic approach. Both macroscopic stiffnesses (4) and average
lattice strains (9) are calculated using the arithmetic mean (1).

- 2) Full geometric approach. Same as case 1), but applying the geometric
mean (2) in equations (4) and (11), whether the macroscopic stiffness or the
lattice strains have to be computed, respectively.

- 3) A mixed geometric-arithmetic procedure. The geometric mean (2) is kept
for the calculation of the macroscopic stiffness (4) of the polycrystal that is
required for computing equation (9). But, the lattice strains are calculated
using the arithmetic average (1), in order to avoid indeterminations occurring
with the geometric mean when mesoscopic elastic anisotropy leads to
simultaneous positive and negative values of the mesoscopic lattice strains in
the measurement direction (in that case, as explained in subsection 3.1.2, the
arithmetic mean only enables calculation of the lattice strains over the
diffracting volume of the material).

The assumed measurement conditions were as follows: varies from 0° up to 90° and
the calculations were repeated for two diffracting planes, {200} that does not present any
mesoscopic elastic anisotropy (thus, the mechanical states and lattice strains are identical in
one given measurement direction {}) and the {311} family, that generally presents a
distribution of the mesoscopic mechanical states over the diffracting grains.

The obtained results are shown on figure 3. The following properties have been observed:
v) No significant discrepancy of the lattice strains plotted as a function of

sin²appears in the case that single-phase materials are considered, whatever
the choice of averaging type.

vi) According to figure 3, a rather good agreement between the “mixed geometric-
arithmetic” and the “full geometric” calculation schemes is obtained. This
property is interesting because it provides a practical way to achieve realistic
calculations of averaged mechanical states, taking into account the effect of the
geometric mean on the effective mechanical behaviour of the polycrystal,
without being limited by the mathematical constraints due to the power-
product for the purpose of averaging mechanical states such as lattice strains.

4. Conclusions and Perspectives

The present paper was devoted to the comparison of the numerical results provided in pure
elasticity by Eshelby-Kröner model depending on the average type chosen for achieving set
average operations: either the traditional arithmetic mean or the geometric average, on the
basis of the theoretical analysis previously presented in [14]. Various numerical applications
of the model to the case of predicting either the effective stiffness or the lattice strains of
single-phase polycrystals were provided. The particular case when an extreme grain-shape
occurs was also taken into account. It was shown that a mixed geometric-arithmetic set-
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average based methodology could be used in order to overcome the difficulties encountered
when performing averaging operations over subsets of mechanical states including both
positive and negative values.
According to the observations i) to vi) listed in subsection 3.2, the present work confirms that
the micro-mechanical elastic models based on arithmetic or geometric averages are, in most
cases, at least numerically close together, provided that single-phase materials are considered.
Thus, in order to treat such a case, the choice of an averaging type will have, at worst, only a
minor, and, thus, by comparison to the experimental errors, negligible influence on the
calculated behaviour of the studied polycrystal. It means, for instance, that the inversion of
scale transition models, in order to estimate the single-crystal elastic properties from
measurements performed on single-phase polycrystals, should lead to the determination of the
same physical constants independently of the method chosen in order to perform averaging
operations (knowing that the standard relative deviation on each estimated single-crystal
elasticity constant is around 10 %, due to experimental errors). This is an important property,
since both averaging types have been used in the literature: the classical application of the
arithmetic mean to estimate single-crystal elasticity constants [39-41] having been recently,
sometimes, replaced by the geometric mean [13].
Further studies will be devoted to an extensive comparison between the materials properties
predicted by Eshelby-Kröner elastic model depending on the average type chosen for
achieving set average operations, in the context of identifying the X-Ray Elastic Constants
(XEC) or the Single-crystal Elastic Constants (SEC), from lattice strains measured on
polycrystalline samples owing to diffraction methods. The aim would be to extend the results
already obtained by [21], in the specific context of computing the Diffraction Elastic Constant
(DEC) F11 of a strongly textured cold rolled ultra low carbon steel sample through various
simple yet effective models (Reuss, Voigt, Hill) owing to through either the arithmetic
average or the so-called “new average” proposed by Morawiec [9], which indeed corresponds
to the geometric mean. The authors obtained a good agreement between the DEC predicted by
a given model, whatever the considered set averaging method. However, the consequences
related to that choice on the identified SEC has still not been investigated.
Extensions to the present analysis to the scale transition analysis of heterogeneous materials
experiencing thermal or hygroscopic loads or even chemical shrinkage through the self-
consistent model will also be provided in a forthcoming paper.
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Figures captions

Figure 1. Definition of the angles  and  and orientation of the laboratory system L with
respect to the sample system S. LD, TD and ND respectively stands for Longitudinal,
Transverse and Normal Directions in the reference frame of the sample.

Figure 2. Comparison between some macroscopic elastic stiffness components estimated with
Eshelby-Kröner model involving either geometric or arithmetic averages for various
materials. Study of grain shape effects: a) spherical grains, b) disc-shaped grains and c) cigar-
shaped grains.

Figure 3. Comparisons between lattice strains [10-6] estimated in silicon carbide with Eshelby-
Kröner model involving either geometric or arithmetic averages. The captions ari, geo and
geo-ari respectively stand for the “full arithmetic”, “full geometric” and “mixed geometric-
arithmetic” as described in subsection 3.2.2.
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Tables captions

Table 1. Coefficient of elastic anisotropy of various single-crystals [38].
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Figure 2. Comparison between some macroscopic elastic stiffness components estimated with
Eshelby-Kröner model involving either geometric or arithmetic averages for various
materials. Study of grain shape effects: a) spherical grains, b) disc-shaped grains and c) cigar-
shaped grains.
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Figure 3. Comparisons between lattice strains [10-6] estimated in silicon carbide with Eshelby-
Kröner model involving either geometric or arithmetic averages. The captions ari, geo and
geo-ari respectively stand for the “full arithmetic”, “full geometric” and “mixed geometric-
arithmetic” as described in subsection 3.2.2.
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Tables

Crystal Al Diamond-C Mo W Cr Fe Fe SiC Cu
Ac 1.23 1.00 0.91 0.97 0.71 2.41 3.34 2.20 3.21

Table 1. Coefficient of elastic anisotropy of various single-crystals [38].


